Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Int J Biol Macromol ; 185: 494-512, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34197854

RESUMEN

Snakebite envenoming is the cause of an ongoing health crisis in several regions of the world, particularly in tropical and neotropical countries. This scenario creates an urgent necessity for new practical solutions to address the limitations of current therapies. The current study investigated the isolation, phytochemical characterization, and myotoxicity inhibition mechanism of gallic acid (GA), a myotoxin inhibitor obtained from Anacardium humile. The identification and isolation of GA was achieved by employing analytical chromatographic separation, which exhibited a compound with retention time and nuclear magnetic resonance spectra compatible with GA's commercial standard and data from the literature. GA alone was able to inhibit the myotoxic activity induced by the crude venom of Bothrops jararacussu and its two main myotoxins, BthTX-I and BthTX-II. Circular dichroism (CD), fluorescence spectroscopy (FS), dynamic light scattering (DLS), and interaction studies by molecular docking suggested that GA forms a complex with BthTX-I and II. Surface plasmon resonance (SPR) kinetics assays showed that GA has a high affinity for BthTX-I with a KD of 9.146 × 10-7 M. Taken together, the two-state reaction mode of GA binding to BthTX-I, and CD, FS and DLS assays, suggest that GA is able to induce oligomerization and secondary structure changes for BthTX-I and -II. GA and other tannins have been shown to be effective inhibitors of snake venoms' toxic effects, and herein we demonstrated GA's ability to bind to and inhibit a snake venom PLA2, thus proposing a new mechanism of PLA2 inhibition, and presenting more evidence of GA's potential as an antivenom compound.


Asunto(s)
Anacardium/química , Ácido Gálico/farmacología , Miotoxicidad/tratamiento farmacológico , Inhibidores de Fosfolipasa A2/farmacología , Fosfolipasas A2/metabolismo , Venenos de Serpiente/enzimología , Animales , Modelos Animales de Enfermedad , Ácido Gálico/química , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Miotoxicidad/enzimología , Miotoxicidad/etiología , Inhibidores de Fosfolipasa A2/química , Fosfolipasas A2/química , Tallos de la Planta/química , Proteínas de Reptiles/química , Proteínas de Reptiles/metabolismo , Resonancia por Plasmón de Superficie
2.
Molecules ; 26(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203140

RESUMEN

INTRODUCTION: Snakebite envenomation is considered a neglected tropical disease, and SVTLEs critical elements are involved in serious coagulopathies that occur on envenoming. Although some enzymes of this group have been structurally investigated, it is essential to characterize other proteins to better understand their unique properties such as the Lachesis muta rhombeata 47 kDa (Lmr-47) venom serine protease. METHODS: The structure of Lmr-47 was studied in solution, using SAXS, DLS, CD, and in silico by homology modeling. Molecular docking experiments simulated 21 competitive inhibitors. RESULTS: At pH 8.0, Lmr-47 has an Rg of 34.5 ± 0.6 Å, Dmax of 130 Å, and SR of 50 Å, according to DLS data. Kratky plot analysis indicates a rigid shape at pH 8.0. Conversely, the pH variation does not change the center of mass's intrinsic fluorescence, possibly indicating the absence of fluorescent amino acids in the regions affected by pH variation. CD experiments show a substantially random coiled secondary structure not affected by pH. The low-resolution model of Lmr-47 presented a prolate elongated shape at pH 8.0. Using the 3D structure obtained by molecular modeling, docking experiments identified five good and three suitable competitive inhibitors. CONCLUSION: Together, our work provided insights into the structure of the Lmr-47 and identified inhibitors that may enhance our understanding of thrombin-like family proteins.


Asunto(s)
Venenos de Crotálidos/enzimología , Crotalinae , Simulación del Acoplamiento Molecular , Proteínas de Reptiles/química , Trombina/química , Animales , Dispersión del Ángulo Pequeño , Difracción de Rayos X
3.
J Chem Ecol ; 47(10-11): 907-914, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34165686

RESUMEN

The use of venom in predation exerts a corresponding selection pressure for the evolution of venom resistance. One of the mechanisms related to venom resistance in animals (predators or prey of snakes) is the presence of molecules in the blood that can bind venom toxins, and inhibit their pharmacological effects. One such toxin type are venom phospholipase A2s (PLA2s), which have diverse effects including anticoagulant, myotoxic, and neurotoxic activities. BoaγPLI isolated from the blood of Boa constrictor has been previously shown to inhibit venom PLA2s that induced myotoxic and edematogenic activities. Recently, in addition to its previously described and very potent neurotoxic effect, the venoms of American coral snakes (Micrurus species) have been shown to have anticoagulant activity via PLA2 toxins. As coral snakes eat other snakes as a major part of their diet, neonate Boas could be susceptible to predation by this sympatric species. Thus, this work aimed to ascertain if BoaγPLI provided a protective effect against the anticoagulant toxicity of venom from the model species Micrurus laticollaris in addition to its ability shown previously against other toxin types. Using a STA R Max coagulation analyser robot to measure the effect upon clotting time, and TEG5000 thromboelastographers to measure the effect upon clot strength, we evaluated the ability of BoaγPLI to inhibit M. laticollaris venom. Our results indicate that BoaγPLI is efficient at inhibiting the M. laticollaris anticoagulant effect, reducing the time of coagulation (restoring them closer to non-venom control values) and increasing the clot strength (restoring them closer to non-venom control values). These findings demonstrate that endogenous PLA2 inhibitors in the blood of non-venomous snakes are multi-functional and provide broad resistance against a myriad of venom PLA2-driven toxic effects including coagulotoxicity, myotoxicity, and neurotoxicity. This novel form of resistance could be evidence of selective pressures caused by predation from venomous snakes and stresses the need for field-based research aimed to expand our understanding of the evolutionary dynamics of such chemical arms race.


Asunto(s)
Boidae , Serpientes de Coral , Fosfolipasas A2/toxicidad , Proteínas de Reptiles/toxicidad , Venenos de Serpiente/química , Simpatría , Ponzoñas/química , Animales , Fosfolipasas A2/química , Conducta Predatoria , Proteínas de Reptiles/química , Venenos de Serpiente/análisis , Venenos de Serpiente/enzimología , Ponzoñas/análisis , Ponzoñas/enzimología
4.
Protein J ; 40(4): 589-599, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34019197

RESUMEN

Structural and functional aspects of snake venoms metalloproteinases (SVMPs) have been extensively studied due to their role in envenomation. However, in the detection of certain coagulation disorders these biomolecules have been used and applied for the production of new thrombolytic drugs. CcMP-II, a SVMP-II metalloproteinase with a hemorrhagic activity, isolated from the venom of Cerastes cerastes, its sequence of 472 amino acids was identified. Predicted 3D structure showed an arrangement of CcMP-II into two distinct domains: i) a metalloproteinase domain where the zinc-binding motif is found (HXXGHNLGIDH) in addition to the sequence Cys-Ile-Met (CIM) at the Met-turn and ii) disintegrin-like domain containing RGD motif. CcMP-II inhibits platelet aggregation induced by collagen in a dose-dependent manner with an IC50 value estimated of 0.11 nM. This proteinase inhibits also aggregation of platelet stimulated by collagen even if the metal chelating agents (EDTA and 1, 10-phenontroline) are present suggesting that anti-aggregating effect is not due to its metalloproteinase domain, but to its disintegrin-like domain. Capillary pathological modifications caused by CcMP-II following intramuscular injection have as well been examined in mice. The key morphological alterations of the capillary vessels were clearly apparent from the ultrastructural study. The CcMP-II can play a key function in the pathogenesis of disorders that occurs following envenomation of Cerastes cerastes. The three-dimensional model of CcMP-II was built to explain structure-function relationships in ADAM/ADAMTs, a family of proteins having significant therapeutic potential. In order to explain structure-function relationships in ADAM / ADAMT, a family of proteins with considerable therapeutic potential, the three-dimensional model of CcMP-II was constructed.


Asunto(s)
Hemorragia , Metaloendopeptidasas , Agregación Plaquetaria/efectos de los fármacos , Proteínas de Reptiles , Venenos de Víboras/química , Viperidae , Animales , Hemorragia/inducido químicamente , Hemorragia/metabolismo , Masculino , Metaloendopeptidasas/química , Metaloendopeptidasas/aislamiento & purificación , Metaloendopeptidasas/toxicidad , Ratones , Dominios Proteicos , Proteínas de Reptiles/química , Proteínas de Reptiles/aislamiento & purificación , Proteínas de Reptiles/toxicidad
5.
Biomed Res Int ; 2021: 6618349, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816618

RESUMEN

Snakebite is one of the most neglected diseases of developing countries. Deaths due to snakebite envenoming are quite high in Pakistan, and many deaths are caused by Echis carinatus envenomation. Traditional use of medicinal plants against snakebites is a common practice in Pakistan due to countless benefits. The current study was performed with the objective to evaluate eighteen Pakistani medicinal plants inhibitory potential against hyaluronidase and alkaline phosphatase enzymes of Pakistani Echis carinatus venom. Hyaluronidase activity (0.2-1.6 mg/0.1 mL) and alkaline phosphatase activity (0.1-0.8 mg/0.1 mL) were measured in dose-dependent manner. Crude methanolic extracts of medicinal plants were used for in vitro investigation of their inhibitory activity against toxic enzymes. All active plants were fractioned using different solvents and were again analyzed for inhibitory activity of same enzymes. Results indicated all plants were able to neutralize hyaluronidase that Swertia chirayita (Roxb. ex Flem.) Karst., Terminalia arjuna Wight and Arn, Rubia cordifolia Thumb., and Matthiola incana (L.) R.Br. inhibited maximum hyaluronidase activity equivalent to standard reference (p > 0.5). Pakistani medicinal plants are dense with natural neutralizing metabolites and other active phytochemicals which could inhibit hyaluronidase activity of Pakistani Echis carinatus venom. Further advanced studies at molecular level could lead us to an alternative for envenoming of Pakistani Echis carinatus venom.


Asunto(s)
Fosfatasa Alcalina , Hialuronoglucosaminidasa , Extractos Vegetales/química , Plantas Medicinales/química , Proteínas de Reptiles , Venenos de Víboras/enzimología , Viperidae , Fosfatasa Alcalina/antagonistas & inhibidores , Fosfatasa Alcalina/química , Animales , Hialuronoglucosaminidasa/antagonistas & inhibidores , Hialuronoglucosaminidasa/química , Proteínas de Reptiles/antagonistas & inhibidores , Proteínas de Reptiles/química
6.
PLoS Negl Trop Dis ; 15(3): e0009247, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33764996

RESUMEN

BACKGROUND: Snakebite in India results in over 58,000 fatalities and a vast number of morbidities annually. The majority of these clinically severe envenomings are attributed to Russell's viper (Daboia russelii), which has a near pan-India distribution. Unfortunately, despite its medical significance, the influence of biogeography on the composition and potency of venom from disparate D. russelii populations, and the repercussions of venom variation on the neutralisation efficacy of marketed Indian antivenoms, remain elusive. METHODS: Here, we employ an integrative approach comprising proteomic characterisation, biochemical analyses, pharmacological assessment, and venom toxicity profiling to elucidate the influence of varying ecology and environment on the pan-Indian populations of D. russelii. We then conducted in vitro venom recognition experiments and in vivo neutralisation assays to evaluate the efficacy of the commercial Indian antivenoms against the geographically disparate D. russelii populations. FINDINGS: We reveal significant intraspecific variation in the composition, biochemical and pharmacological activities and potencies of D. russelii venoms sourced from five distinct biogeographic zones across India. Contrary to our understanding of the consequences of venom variation on the effectiveness of snakebite therapy, commercial antivenom exhibited surprisingly similar neutralisation potencies against the majority of the investigated populations, with the exception of low preclinical efficacy against the semi-arid population from northern India. However, the ability of Indian antivenoms to counter the severe morbid effects of Daboia envenoming remains to be evaluated. CONCLUSION: The concerning lack of antivenom efficacy against the north Indian population of D. russelii, as well as against two other 'big four' snake species in nearby locations, underscores the pressing need to develop pan-India effective antivenoms with improved efficacy in high snakebite burden locales.


Asunto(s)
Antivenenos/uso terapéutico , Daboia , Mordeduras de Serpientes/tratamiento farmacológico , Venenos de Víboras/genética , Animales , Ecosistema , India/epidemiología , Masculino , Ratones , Filogeografía , Proteoma , Proteínas de Reptiles/química , Proteínas de Reptiles/genética , Mordeduras de Serpientes/epidemiología , Espectrometría de Masas en Tándem , Venenos de Víboras/química
7.
J Immunol ; 206(7): 1653-1667, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33637616

RESUMEN

The reptile MHC class I (MCH-I) and MHC class II proteins are the key molecules in the immune system; however, their structure has not been investigated. The crystal structure of green anole lizard peptide-MHC-I-ß2m (pMHC-I or pAnca-UA*0101) was determined in the current study. Subsequently, the features of pAnca-UA*0101 were analyzed and compared with the characteristics of pMHC-I of four classes of vertebrates. The amino acid sequence identities between Anca-UA*0101 and MHC-I from other species are <50%; however, the differences between the species were reflected in the topological structure. Significant characteristics of pAnca-UA*0101 include a specific flip of ∼88° and an upward shift adjacent to the C terminus of the α1- and α2-helical regions, respectively. Additionally, the lizard MHC-I molecule has an insertion of 2 aa (VE) at positions 55 and 56. The pushing force from 55-56VE triggers the flip of the α1 helix. Mutagenesis experiments confirmed that the 55-56VE insertion in the α1 helix enhances the stability of pAnca-UA*0101. The peptide presentation profile and motif of pAnca-UA*0101 were confirmed. Based on these results, the proteins of three reptile lizard viruses were used for the screening and confirmation of the candidate epitopes. These data enhance our understanding of the systematic differences between five classes of vertebrates at the gene and protein levels, the formation of the pMHC-I complex, and the evolution of the MHC-I system.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/química , Lagartos/inmunología , Infecciones por Nidovirales/inmunología , Nidovirales/fisiología , Proteínas de Reptiles/química , Secuencia de Aminoácidos , Animales , Antígenos Virales/genética , Cristalografía por Rayos X , Epítopos/genética , Evolución Molecular , Antígenos de Histocompatibilidad Clase I/genética , Sistema Inmunológico , Inmunidad , Filogenia , Polimorfismo Genético , Conformación Proteica , Estabilidad Proteica , Proteínas de Reptiles/genética
8.
Toxins (Basel) ; 14(1)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-35050978

RESUMEN

ß-defensins are antimicrobial peptides presenting in vertebrate animals. They participate in innate immunity, but little is known about them in reptiles, including snakes. Although several ß-defensin genes were described in Brazilian snakes, their function is still unknown. The peptide sequence from these genes was deduced, and synthetic peptides (with approximately 40 amino acids and derived peptides) were tested against pathogenic bacteria and fungi using microbroth dilution assays. The linear peptides, derived from ß-defensins, were designed applying the bioisosterism strategy. The linear ß-defensins were more active against Escherichia coli, Micrococcus luteus, Citrobacter freundii, and Staphylococcus aureus. The derived peptides (7-14 mer) showed antibacterial activity against those bacteria and on Klebsiella pneumoniae. Nonetheless, they did not present activity against Candida albicans, Cryptococcus neoformans, Trychophyton rubrum, and Aspergillus fumigatus showing that the cysteine substitution to serine is deleterious to antifungal properties. Tryptophan residue showed to be necessary to improve antibacterial activity. Even though the studied snake ß-defensins do not have high antimicrobial activity, they proved to be attractive as template molecules for the development of antibiotics.


Asunto(s)
Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Proteínas de Reptiles/farmacología , Serpientes , beta-Defensinas/farmacología , Animales , Antiinfecciosos/química , Proteínas de Reptiles/química , Especificidad de la Especie , beta-Defensinas/química
9.
Protein Pept Lett ; 28(4): 426-441, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32798364

RESUMEN

BACKGROUND: Cerastes cerastes venom contains several bioactive proteins with inhibitory potential of platelet aggregation and blood coagulation. OBJECTIVE: The current study deals with purification, characterization and determination of structural properties of Cc-PDE, the first phosphodiesterase from Cerastes cerastes venom. MATERIAL AND METHODS: The purification process consists of three successive chromatographies including G75-Sephadex size exclusion, DEAE exchange chromatography and affinity using Sildenafil as a main PDEs' specific inhibitor. The amino acid sequence of purified Cc-PDE was determined by liquid chromatography coupled off line to MALDI-TOF/TOF. Modeling and structural features were obtained using several bioinformatics tools. In vivo and in vitro antiplatelet aggregation and anticoagulant assays were performed. RESULTS: Cc-PDE (73 506.42 Da) is a 654-residue single polypeptide with 1-22 signal peptide and it is characterized by the presence of predominant basic amino acids suitable to alkaline pI (8.17). Cc-PDE structure is composed of ß-strands (17%) and α-helices (24%) and it shares a high identity with homologous snake venom PDEs. Cc-PDE hydrolyzes both Bis-p-nitrophenyl phosphate (Km = 2.60 ± 0.95 mM, Vmax = 0.017 ± 0.002569 µmol.min-1) and p-nitrophenyl phosphate (Km = 7.13 mM ± 0.04490 mM, Vmax = 0.053 ±0.012 µmol.min-1). Cc-PDE prevents ADP- and ATP-induced platelet aggregation by hydrolyzing ADP and ATP, reducing surface P-selectin expression and attenuating platelet function. In addition, Cc-PDE inhibits coagulation factors involved in the intrinsic pathway demonstrated by a significant prolongation of activated partial thromboplastin time and in vivo long-lasting anticoagulation. CONCLUSION: The obtained results revealed that Cc-PDE may have a therapeutic potential and could be a remedy for thromboembolic diseases as an alternative of anticoagulant and antiplatelet aggregation chemical origins.


Asunto(s)
Anticoagulantes , Plaquetas/metabolismo , Hidrolasas Diéster Fosfóricas , Agregación Plaquetaria/efectos de los fármacos , Proteínas de Reptiles , Viperidae , Animales , Anticoagulantes/química , Anticoagulantes/farmacología , Humanos , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/farmacología , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos , Conejos , Proteínas de Reptiles/química , Proteínas de Reptiles/farmacología , Venenos de Víboras/química , Venenos de Víboras/farmacología
10.
Biomolecules ; 10(9)2020 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-32899462

RESUMEN

The dynamic development of venomics in recent years has resulted in a significant increase in publicly available proteomic data. The information contained therein is often used for comparisons between different datasets and to draw biological conclusions therefrom. In this article, we aimed to show the possible differences that can arise, in the final results of the proteomic experiment, while using different research workflows. We applied two software solutions (PeptideShaker and MaxQuant) to process data from shotgun LC-MS/MS analysis of Naja ashei venom and collate it with the previous report concerning this species. We were able to provide new information regarding the protein composition of this venom but also present the qualitative and quantitative limitations of currently used proteomic methods. Moreover, we reported a rapid and straightforward technique for the separation of the fraction of proteins from the three-finger toxin family. Our results underline the necessary caution in the interpretation of data based on a comparative analysis of data derived from different studies.


Asunto(s)
Biología Computacional/métodos , Naja/metabolismo , Proteoma/química , Proteómica/métodos , Proteínas de Reptiles/química , Venenos de Serpiente/química , Animales , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Femenino , Masculino , Proteoma/metabolismo , Programas Informáticos , Espectrometría de Masas en Tándem
11.
Toxins (Basel) ; 12(8)2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823821

RESUMEN

Cobra snakes, including Naja mossambica and Naja nigricincta nigricincta, are one of the major groups of snakes responsible for snakebites in southern Africa, producing significant cytotoxicity and tissue damage. The venom of N. mossambica has been briefly characterised, but that of N. n. nigricincta is not reported. The current study identifies the venom proteins of N. mossambica and N. n. nigricincta. This is achieved using sodium dodecyl sulphate (SDS)-polyacrylamide gel eletrophroresis (PAGE), followed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Most of the proteins were less than 17 kDa in both snakes. N. mossambica was found to have 75 proteins in total (from 16 protein families), whereas N.n. nigricincta had 73 (from 16 protein families). Of these identified proteins, 57 were common in both snakes. The proteins identified belonged to various families, including the three-finger toxins (3FTx), Cysteine-rich secretory proteins (CRiSP), Phospholipase A2 (PLA2) and Venom metalloproteinase M12B (SVMP). The current study contributes to the profile knowledge of snake venom compositions, which is of fundamental value in understanding the proteins that play a major role in envenomation.


Asunto(s)
Venenos Elapídicos/química , Naja , Proteínas de Reptiles/química , Animales , Cromatografía Líquida de Alta Presión , Proteoma , Espectrometría de Masas en Tándem
12.
Molecules ; 25(15)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731325

RESUMEN

Chronic wounds are a major health problem that cause millions of dollars in expenses every year. Among all the treatments used, active wound treatments such as enzymatic treatments represent a cheaper and specific option with a fast growth category in the market. In particular, bacterial and plant proteases have been employed due to their homology to human proteases, which drive the normal wound healing process. However, the use of these proteases has demonstrated results with low reproducibility. Therefore, alternative sources of proteases such as snake venom have been proposed. Here, we performed a functional mining of proteases from rattlesnakes (Crotalus ornatus, C. molossus nigrescens, C. scutulatus, and C. atrox) due to their high protease predominance and similarity to native proteases. To characterize Crotalus spp. Proteases, we performed different protease assays to measure and confirm the presence of metalloproteases and serine proteases, such as the universal protease assay and zymography, using several substrates such as gelatin, casein, hemoglobin, L-TAME, fibrinogen, and fibrin. We found that all our venom extracts degraded casein, gelatin, L-TAME, fibrinogen, and fibrin, but not hemoglobin. Crotalus ornatus and C. m. nigrescens extracts were the most proteolytic venoms among the samples. Particularly, C. ornatus predominantly possessed low molecular weight proteases (P-I metalloproteases). Our results demonstrated the presence of metalloproteases capable of degrading gelatin (a collagen derivative) and fibrin clots, whereas serine proteases were capable of degrading fibrinogen-generating fibrin clots, mimicking thrombin activity. Moreover, we demonstrated that Crotalus spp. are a valuable source of proteases that can aid chronic wound-healing treatments.


Asunto(s)
Venenos de Crotálidos/enzimología , Crotalus/metabolismo , Metaloproteasas , Proteínas de Reptiles , Serina Proteasas , Heridas y Lesiones/tratamiento farmacológico , Animales , Fibrinólisis/efectos de los fármacos , Humanos , Metaloproteasas/química , Metaloproteasas/farmacología , Reproducibilidad de los Resultados , Proteínas de Reptiles/química , Proteínas de Reptiles/farmacología , Serina Proteasas/química , Serina Proteasas/farmacología , Heridas y Lesiones/metabolismo , Heridas y Lesiones/patología
13.
Molecules ; 25(6)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197309

RESUMEN

Snakebite is a neglected disease with a high impact in tropical and subtropical countries. Therapy based on antivenom has limited efficacy in local tissue damage caused by venoms. Phospholipases A2 (PLA2) are enzymes that abundantly occur in snake venoms and induce several systemic and local effects. Furthermore, sulfur compounds such as thioesters have an inhibitory capacity against a snake venom PLA2. Hence, the objective of this work was to obtain a carbodithioate from a thioester with known activity against PLA2 and test its ability to inhibit the same enzyme. Benzyl 4-nitrobenzenecarbodithioate (I) was synthesized, purified, and characterized using as precursor 4-nitrothiobenzoic acid S-benzyl ester (II). Compound I showed inhibition of the enzymatic activity a PLA2 isolated from the venom of the Colombian rattlesnake Crotalus durissus cumanensis with an IC50 of 55.58 µM. This result is comparable with the reported inhibition obtained for II. Computational calculations were performed to support the study, and molecular docking results suggested that compounds I and II interact with the active site residues of the enzyme, impeding the normal catalysis cycle and attachment of the substrate to the active site of the PLA2.


Asunto(s)
Venenos de Crotálidos/química , Crotalus , Simulación del Acoplamiento Molecular , Inhibidores de Fosfolipasa A2/química , Fosfolipasas A2/química , Proteínas de Reptiles , Compuestos de Azufre/química , Animales , Proteínas de Reptiles/antagonistas & inhibidores , Proteínas de Reptiles/química
14.
Toxins (Basel) ; 12(3)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178374

RESUMEN

The CAP protein superfamily (Cysteine-rich secretory proteins (CRISPs), Antigen 5 (Ag5), and Pathogenesis-related 1 (PR-1) proteins) is widely distributed, but for toxinologists, snake venom CRISPs are the most familiar members. Although CRISPs are found in the majority of venoms, very few of these proteins have been functionally characterized, but those that have been exhibit diverse activities. Snake venom CRISPs (svCRISPs) inhibit ion channels and the growth of new blood vessels (angiogenesis). They also increase vascular permeability and promote inflammatory responses (leukocyte and neutrophil infiltration). Interestingly, CRISPs in lamprey buccal gland secretions also manifest some of these activities, suggesting an evolutionarily conserved function. As we strive to better understand the functions that CRISPs serve in venoms, it is worth considering the broad range of CRISP physiological activities throughout the animal kingdom. In this review, we summarize those activities, known crystal structures and sequence alignments, and we discuss predicted functional sites. CRISPs may not be lethal or major components of venoms, but given their almost ubiquitous occurrence in venoms and the accelerated evolution of svCRISP genes, these venom proteins are likely to have functions worth investigating.


Asunto(s)
Proteínas de Reptiles , Venenos de Serpiente , Animales , Cisteína , Evolución Molecular , Humanos , Unión Proteica , Proteínas de Reptiles/química , Proteínas de Reptiles/genética , Proteínas de Reptiles/toxicidad , Venenos de Serpiente/química , Venenos de Serpiente/genética , Venenos de Serpiente/toxicidad
15.
Protein Pept Lett ; 27(8): 718-724, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31994997

RESUMEN

BACKGROUND: Cutaneous and mucocutaneous leishmaniasis are parasitic diseases characterized by skin manifestations. In Brazil, Leishmania (Leishmania) amazonensis is one of the etiological agents of cutaneous leishmaniasis. The therapeutic arsenal routinely employed to treat infected patients is unsatisfactory, especially for pentavalent antimonials, as they are often highly toxic, poorly tolerated and of variable effectiveness. This study aimed to evaluate in vitro the leishmanicidal activity of toxins isolated from Crotalus durissus terrificus venom as a new approach for the treatment of leishmaniasis. METHODS: The comparative effects of crotamine, crotoxin, gyrotoxin, convulxin and PLA2 on bone marrow-derived macrophages infected with L. (L.) amazonensis as well as the release of TGF-ß from the treated macrophages were studied. RESULTS AND DISCUSSION: Crotamine had the strongest inhibitory effect on parasite growth rate (IC50: 25.65±0.52 µg/mL), while convulxin showed the weakest inhibitory effect (IC50: 52.7±2.21 µg/mL). In addition, TGF-ß was significantly reduced after the treatment with all toxins evaluated. CONCLUSION: The Crotalus durissus terrificus toxins used in this study displayed significant activity against L. (L.) amazonensis, indicating that all of them could be a potential alternative for the treatment of cutaneous leishmaniasis.


Asunto(s)
Antiprotozoarios , Venenos de Crotálidos/química , Crotalus , Leishmania/crecimiento & desarrollo , Leishmaniasis/tratamiento farmacológico , Proteínas de Reptiles , Animales , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Antiprotozoarios/farmacología , Femenino , Leishmaniasis/metabolismo , Leishmaniasis/patología , Ratones , Ratones Endogámicos BALB C , Proteínas de Reptiles/química , Proteínas de Reptiles/aislamiento & purificación , Proteínas de Reptiles/farmacología
16.
Toxins (Basel) ; 11(12)2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810356

RESUMEN

Bothropic venoms contain enzymes such as metalloproteases, serine-proteases, and phospholipases, which acting by themselves, or in synergism, are the cause of the envenomation symptoms and death. Here, two mRNA transcripts, one that codes for a metalloprotease and another for a serine-protease, were isolated from a Bothrops ammodytoides venom gland. The metalloprotease and serine-protease transcripts were cloned on a pCR®2.1-TOPO vector and consequently expressed in a recombinant way in E. coli (strains Origami and M15, respectively), using pQE30 vectors. The recombinant proteins were named rBamSP_1 and rBamMP_1, and they were formed by an N-terminal fusion protein of 16 amino acid residues, followed by the sequence of the mature proteins. After bacterial expression, each recombinant enzyme was recovered from inclusion bodies and treated with chaotropic agents. The experimental molecular masses for rBamSP_1 and rBamMP_1 agreed with their expected theoretical ones, and their secondary structure spectra obtained by circular dichroism were comparable to that of similar proteins. Additionally, equivalent mixtures of rBamSP_1, rBamMP_1 together with a previous reported recombinant phospholipase, rBamPLA2_1, were used to immunize rabbits to produce serum antibodies, which in turn recognized serine-proteases, metalloproteases and PLA2s from B. ammodytoides and other regional viper venoms. Finally, rabbit antibodies neutralized the 3LD50 of B. ammodytoides venom.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Bothrops , Venenos de Crotálidos/inmunología , Metaloproteasas/inmunología , Fosfolipasas/inmunología , Proteínas de Reptiles/inmunología , Serina Proteasas/inmunología , Animales , Venenos de Crotálidos/química , Metaloproteasas/química , Metaloproteasas/genética , Fosfolipasas/química , Fosfolipasas/genética , Conejos , Proteínas Recombinantes , Proteínas de Reptiles/química , Proteínas de Reptiles/genética , Serina Proteasas/química , Serina Proteasas/genética
17.
Sci Rep ; 9(1): 17203, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748642

RESUMEN

The World Health Organization recently listed snakebite envenoming as a Neglected Tropical Disease, proposing strategies to significantly reduce the global burden of this complex pathology by 2030. In this context, effective adjuvant treatments to complement conventional antivenom therapy based on inhibitory molecules for specific venom toxins have gained renewed interest. Varespladib (LY315920) is a synthetic molecule clinically tested to block inflammatory cascades of several diseases associated with elevated levels of secreted phospholipase A2 (sPLA2). Most recently, Varespladib was tested against several whole snake venoms and isolated PLA2 toxins, demonstrating potent inhibitory activity. Herein, we describe the first structural and functional study of the complex between Varespladib and a PLA2-like snake venom toxin (MjTX-II). In vitro and in vivo experiments showed this compound's capacity to inhibit the cytotoxic and myotoxic effects of MjTX-II from the medically important South American snake, Bothrops moojeni. Crystallographic and bioinformatics analyses revealed interactions of Varespladib with two specific regions of the toxin, suggesting inhibition occurs by physical blockage of its allosteric activation, preventing the alignment of its functional sites and, consequently, impairing its ability to disrupt membranes. Furthermore, based on the analysis of several crystallographic structures, a distinction between toxin activators and inhibitors is proposed.


Asunto(s)
Acetatos/farmacología , Indoles/farmacología , Inhibidores de Fosfolipasa A2/farmacología , Fosfolipasas A2/química , Proteínas de Reptiles/química , Toxinas Biológicas/antagonistas & inhibidores , Animales , Bothrops , Cristalografía por Rayos X , Cetoácidos , Simulación de Dinámica Molecular , Fosfolipasas A2/metabolismo , Conformación Proteica , Proteínas de Reptiles/metabolismo
18.
Dokl Biochem Biophys ; 488(1): 338-341, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31768855

RESUMEN

Four dimeric disintegrins were isolated from the venom of the steppe viper V. ursinii using liquid chromatography. Disintegrins prevented adhesion of MCF7 cells to fibronectin, which indicates their interaction with integrin receptors of the αVß1 type. According to mass spectrometry data, the molar masses of disintegrins are about 14 kDa. The method of peptide mapping established the structure of a new heterodimeric disintegrin weighing 13 995.5 Da and shows that it belongs to the class of RGD/KGD-containing disintegrins.


Asunto(s)
Desintegrinas/química , Multimerización de Proteína , Proteínas de Reptiles/química , Venenos de Víboras/química , Viperidae , Animales , Desintegrinas/farmacología , Humanos , Células MCF-7 , Receptores de Vitronectina/metabolismo , Proteínas de Reptiles/farmacología , Venenos de Víboras/farmacología
19.
Toxicon ; 171: 7-19, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31585140

RESUMEN

In this study, we characterize the venom of Centruroides edwardsii, one of the most abundant scorpions in urban and rural areas of Costa Rica, in terms of its biochemical constituents and their biological activities. C. edwardsii venom is rich in peptides but also contains some higher molecular weight protein components. No phospholipase A2, hemolytic or fibrinogenolytic activities were found, but the presence of proteolytic and hyaluronidase enzymes was evidenced by zymography. Venom proteomic analysis indicates the presence of a hyaluronidase, several cysteine-rich secretory proteins, metalloproteinases and a peptidylglycine α-hydroxylating monooxygenase like-enzyme. It also includes peptides similar to the K+-channel blocker margatoxin, a dominant toxin in the venom of the related scorpion C. margaritatus. MS and N-terminal sequencing analysis also reveals the presence of Na+-channel-modulating peptides with sequence similarity to orthologs present in other scorpion species of the genera Centruroides and Tityus. We purified the hyaluronidase (which co-eluted with an allergen 5-like CRiSP) and sequenced ~60% of this enzyme. We also sequenced some venom gland transcripts that include other cysteine-containing peptides and a Non-Disulfide Bridged Peptide (NDBP). Our in vivo experiments characterizing the effects on potential predators and prey show that C. edwardsii venom induces paralysis in several species of arthropods and geckos; crickets being the most sensitive and cockroaches and scorpions the most resistant organisms tested. Envenomation signs were also observed in mice, but no lethality was reached by intraperitoneal administration of this venom up to 120 µg/g body weight.


Asunto(s)
Venenos de Escorpión/química , Venenos de Escorpión/toxicidad , Escorpiones/química , Animales , Costa Rica , Femenino , Hialuronoglucosaminidasa/aislamiento & purificación , Insectos , Lagartos , Masculino , Ratones , Parálisis/inducido químicamente , Conducta Predatoria , Proteoma , Proteínas de Reptiles/química , Venenos de Escorpión/enzimología , Transcriptoma
20.
Protein J ; 38(5): 565-575, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31278531

RESUMEN

The biochemical properties and biological activities of the venom from three individual Ophiophagus hannah (King cobra) specimens was compared. The toxicity against mice, the cytotoxicity against five cell lines, and the antioxidant activity were measured. The KV2 venom showed a higher cytotoxicity than the KV6 and the non-cytotoxic KV9 venoms. Comparative analysis of the O. hannah venom proteins was performed after 2-dimensional (2-D) denaturing gel electrophoresis and reverse phase high performance liquid chromatography (RP-HPLC). 2-D analysis by isoelectric focusing (IEF) Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) resolution of the venoms revealed significant differences between all three venoms, with most spots being unique to that venom. Only 2 out of the 13-16 distinct spots were common to all three venoms, and four spots were common to KV6 and KV9. KV2 had the highest proportion of low molecular mass spots, and KV6 and KV9 appeared more related to each other than to KV9. From peptide mass mapping by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and MASCOT-based amino acid sequence database searching, the two venom proteins that were common to all three specimens are likely to be ophanin and acidic phospholipase A2 (PLA2), whilst the proteins unique to the cytotoxic KV2 venom, included three other PLA2 proteins. The RP-HPLC pattern of KV2 was different from the other two venoms with a higher protein concentration eluting in the 31-41% (v/v) acetonitrile (ACN) fraction than for the other two venoms.


Asunto(s)
Venenos Elapídicos/química , Venenos Elapídicos/farmacología , Ophiophagus hannah , Proteínas de Reptiles/química , Proteínas de Reptiles/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Venenos Elapídicos/metabolismo , Electroforesis en Gel de Poliacrilamida , Humanos , Ophiophagus hannah/metabolismo , Proteínas de Reptiles/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...